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Abstract Solar flares are among the most severe space weather phenomena,
and they have the capacity to generate radiation storms and radio disruptions
on Earth. The accurate prediction of solar flare events remains a significant
challenge, requiring continuous monitoring and identification of specific features
that can aid in forecasting this phenomenon, particularly for different classes of
solar flares. In this study, we aim to forecast C and M class solar flares utilising
a machine-learning algorithm, namely the Light Gradient Boosting Machine.
We have utilised a dataset spanning 9 years, obtained from the Space-weather
Helioseismic and Magnetic Imager Active Region Patches (SHARP), with a
temporal resolution of 1 hour. A total of 37 flare features were considered in our
analysis, comprising of 25 active region parameters and 12 flare history features.
To address the issue of class imbalance in solar flare data, we employed the
Synthetic Minority Oversampling Technique (SMOTE). We used two labeling
approaches in our study: a fixed 24-hour window label and a varying window
that considers the changing nature of solar activity. Then, the developed machine
learning algorithm was trained and tested using forecast verification metrics,
with an emphasis on evaluating the true skill statistic (TSS). Furthermore, we
implemented a feature selection algorithm to determine the most significant
features from the pool of 37 features that could distinguish between flaring and
non-flaring active regions. We found that utilising a limited set of useful features
resulted in improved prediction performance. For the 24-hour prediction window,
we achieved a TSS of 0.63 (0.69) and accuracy of 0.90 (0.97) for ≥C (≥M) class
solar flares.
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1. Introduction

The study of the Sun’s influence on Earth and space, commonly referred to as
space weather, has become a crucial field of research worldwide. It involves inves-
tigating the impact of changes in the Sun’s magnetic field on Earth’s magnetic
field and upper atmosphere, leading to geomagnetically induced disturbances.
Solar flares, coronal mass ejections (CMEs), solar energetic particles, and solar
wind stream interaction regions (SIRs) are considered to be the major space
weather drivers. These space weather events can cause disturbances in various
technological systems, such as electric power supply, navigation, and satellite
functionality, and even pose health hazards to astronauts. Additionally, extreme
space weather events may result in significant economic losses (Oughton et al.,
2019). Due to the risks posed by such events, space weather forecasting is crucial
for preparing a rational response to mitigate their impact.

Among the various drivers of space weather, solar flares hold a distinctive
position due to their rapid travel time, their electromagnetic signal taking only
about 8 minutes to reach Earth’s location. Additionally, it has been observed
that M-class solar flares can result in small radiation storms and brief radio
interruptions, particularly in the polar regions (Echer et al., 2005). X-class
solar flares, which are more powerful than M-class flares, can cause radiation
storms with extended durations and more severe impacts. In contrast, CMEs
typically take around 1-3 days, and SIRs take around 3-4 days to reach Earth.
Several forecasting methods have been developed for predicting CMEs and SIRs,
including probabilistic approaches (e.g., PDF (Bussy-Virat and Ridley, 2014);
PROJECTZED (Riley et al., 2017); AnEn (Owens, Riley, and Horbury, 2017)),
observation-based empirical approaches (e.g., ESWF (Reiss et al., 2016); WSA
(Arge and Pizzo, 2000)), and magnetohydrodynamic approaches (e.g., MAS (Ri-
ley, Linker, and Mikić, 2001); ENLIL (Odstrcil, 2003); SWMF (Tóth, van der
Holst, and Huang, 2011); EUHFORIA (Pomoell and Poedts, 2018); SWASTi
(Mayank, Vaidya, and Chakrabarty, 2022)). However, when it comes to predict-
ing solar flares, probabilistic methods stand out as the only efficient option. This
is due to their ability to provide results promptly, which is crucial considering
the rapid travel time of solar flares.

Over the past decade, significant progress has been made in probabilistic
methods for solar flare prediction, leading to the emergence of various tech-
niques. Huang and Wang (2013); Nishizuka et al. (2017) utilised the Decision
Tree algorithm in their solar flare model, while Li and Zhu (2013) employed
Neural Networks and Learning Vector Quantisation models. The Support Vec-
tor Machine algorithm has been widely employed in solar flare prediction, with
studies conducted by Bobra and Couvidat (2015); Nishizuka et al. (2017); Florios
et al. (2018); Ribeiro and Gradvohl (2021). The other machine learning based
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solar flare model includes the k-NN method (Nishizuka et al., 2017), Multi-
Models (Liu et al., 2017), the Random Forest (Liu et al., 2017; Florios et al.,
2018; Ribeiro and Gradvohl, 2021), Multi-layer Perceptrons (Florios et al., 2018),
Long-Short Term Memory (LSTM) (Liu et al., 2019; Wang et al., 2020; Jiao
et al., 2020; Chen et al., 2019). Additionally, Deep Learning Neural Networks
have been used for solar flare prediction (Nishizuka et al., 2018). Despite sub-
stantial advancements in diverse prediction models for solar flares, a definitive
consensus regarding the optimal performing model is currently lacking.

Choosing reliable features for solar flare prediction is a crucial step in achiev-
ing accurate results. Many prediction models rely on photospheric magnetic field
data to parameterise active regions (ARs) and describe them using a few key
parameters, with the goal of establishing relationships between the behaviour of
the photospheric magnetic field and solar activity. However, there is significant
variability in the AR parameters considered in these models. Some models focus
on characterising the magnetic field topology of ARs (e.g., Schrijver, 2007), while
others measure the integrated Lorentz force exerted by an AR (e.g., Fisher et al.,
2011), or employ parameterisations for energy, helicity, currents, and shear angles
(e.g., Moore, Falconer, and Sterling, 2012; LaBonte, Georgoulis, and Rust, 2007;
Leka and Barnes, 2003).

In this study, we have developed a solar flare prediction model utilising the
Light Gradient Boosting Machine (LightGBM; Ke et al., 2017a) algorithm, and
have conducted a comprehensive comparison of various active region (AR) fea-
tures and flaring history parameters to determine their effectiveness in achieving
accurate forecasts. LightGBM, a classification method, has received limited at-
tention in the context of solar flare prediction, with only a few studies, including
Ribeiro and Gradvohl (2021), investigating its performance in comparison to
Support Vector Machine (SVM) and Random Forest (RF) algorithms.

The paper is broadly divided into four sections. Section 2 explains the data
used and how it was processed for the machine learning algorithm to take it
as input. Section 3 explains in detail the machine learning model used and
the improvements, as well as the metrics used to study the performance of the
model. Section 4 discusses the results obtained and explains the feature selection
algorithm used to identify the best set of features. Additionally, a comprehensive
comparison with similar models is also presented. Finally, Section 5 concludes the
paper by discussing both the improvements and the limitations of the methods
used.

2. Data Collection and Preparation

2.1. SHARP HMI active region parameters

For our model, the dataset we adopted was the Space-weather HMI Active
Region Patches (SHARP, Bobra et al., 2014)) data provided by SDO HMI
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(Solar Dynamics Observatory: Helioseismic and Magnetic Imager). In 2014, the
SHARP data series was released, which includes maps in patches that cover
automatically tracked magnetic concentrations throughout their lifetime (Bobra
et al., 2014). These patches identify the active regions (ARs) automatically
and continuously calculate various summary parameters of ARs at a 12-minute
cadence. We collected a total of 25 AR summary parameters provided by the
SHARP module. The selection of the 25 parameters was based on the previous
work done in Bobra et al. (2014). The list of initially considered parameters
characterises several features of solar active regions that have been linked to
increased flare activity. These parameters include different types of indices, such
as the total magnetic flux, the spatial field gradients, the vertical current den-
sity characteristics, current helicity, and a proxy for integrated free magnetic
energy (Bobra et al., 2014). Table 1 presents the initial list of parameters along
with their corresponding equations and a brief description. These parameters
are consistent with those used in Bobra et al. (2014). We used SunPy python
module (Community et al., 2015) to collect SHARP data using JSOC client. The
data products used were hmi.sharp.720s and cgem.lorentz. The subsequent data
series, as described in Sun (2019), estimates the Lorentz force in ARs based on
vector magnetogram patches from the HMI. Both the SHARP and HMI data
series were collected at a cadence of 1 hour.

2.2. GOES Flaring data

To define the training samples for the machine learning model, we searched
for flares that occurred between January 2012 and December 2020. This time
range extends the whole range in which the SHARP HMI data is available. We
used SunPy module to collect flaring events from the Geostationary Operational
Environmental Satellite (GOES) Xray Flux Catalog maintained by the National
Centers for Environmental Information. In order to create the final dataset, each
active region was uniquely identified by its NOAA AR number. This identifier fa-
cilitated the cross-matching of GOES data with HMI SHARP data. Specifically,
for every event listed in the GOES catalogue, all observations corresponding to
the same NOAA AR number were extracted from the HMI SHARP dataset.
From this subset of observations, the one closest in time to the occurrence of the
solar flare was designated as a positive event. This process was repeated for each
flare within the GOES catalogue, thereby culminating in the formation of the
comprehensive final dataset. It is important to acknowledge that a small subset of
events documented in the GOES catalogue was not present in the HMI SHARP
catalog. Consequently, these observations were omitted during the assembly of
the final dataset. After filtering out the samples without any observations in the
HMI SHARP dataset, we ended up with 1846 B-Class flares, 3246 C-Class flares,
318 M-Class flares, and 23 X-Class flares. It should be noted that we consider
all the flaring events irrespective of the AR it originates from, i.e. if an active
region flares multiple times during its lifetime, we count each of them as separate
events.
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2.3. Flaring history parameters

Active regions being areas of rich magnetic activity on the surface on the Sun,
it is a good assumption that an active region with a history of flare occurrences
could hold a high probability for more flares happening. Thus, through under-
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Figure 1. The plot of Cdecay as a function of time. Comparing the top and bottom panels,
we can see that when a flaring event occurs, the value increases and falls exponentially until
the active region produces another flare. This plot corresponds to the NOAA AR 11393.

standing the past flaring activity of an active region, we should be able to increase
the ability to forecast flares (Falconer et al., 2012). Based on the collected flaring
data, we made a framework of 12 flaring history parameters (Liu et al., 2019)
consisting of flare decay values and previous flare occurrences. These parameters
will be able to encompass the history of each active region in terms of various
levels of flaring activity, thus enabling us to study the contribution of history
parameters in detail. Using the equations given in Jonas et al. (2018), time decay
values were calculated for each individual active region. For a data sample in an
AR, the decay values w.r.t C-class, M-class, and X-class are given by:

Cdecay(t) =
∑

fi∈FC

exp
(
− t− t(fi)

τ

)
, (1)

Mdecay(t) =
∑

fi∈FM

exp
(
− t− t(fi)

τ

)
, (2)

Xdecay(t) =
∑

fi∈FX

exp
(
− t− t(fi)

τ

)
, (3)

here F = FC ∪ FM ∪ FX ,where Fk corresponds to the set of k class flares, and
t(fi) corresponds to the time of occurrence of the flare fi. The value of τ is fixed
to be 12 as proposed by Jonas et al. (2018). The nature of this decay function is
depicted in Figure 1 with Cdecay values of an active region. Apart from the time
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decay values w.r.t flare classes, we also calculate the energy decay values of an
AR considering all flares, regardless of the type of flare that occurred before the
sample time t. Here E(fi) corresponds to the magnitude of the flare fi.

Edec(xt) =
∑
fi∈F

E(fi)exp
(
− t− t(fi)

τ

)
, (4)

logEdec(xt) =
∑
fi∈F

log(E(fi))exp
(
− t− t(fi)

τ

)
. (5)

The remaining seven parameters include flare history features of a data sample
as described in Nishizuka et al. (2017). These features include Chist (Mhist,
Xhist) storing the total number of C-Class (M-Class, X-Class) flares in the
AR before the observation time, Chist1d (Mhist1d, Xhist1d) storing the flaring
activity of each class during the 24 hours prior observation time, and finally
Xmax1d storing maximum flare intensity 24 hours prior to the observation.
Table 2 summarises all the flaring history parameters adopted in this model. As
of now, we have 25 active region parameters and 12 flaring history parameters
making a total of 37 features.
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Figure 2. Positive and negative classes in 3 different datasets (≥C-Class with 24 hour predic-
tion window, ≥C-Class with varying prediction window, and ≥M-Class with 24 hour prediction
window).

2.4. Class imbalance problem

To obtain valuable insights into the robust predictive performance of the data,
it is important to ensure the integrity of the data (Ahmadzadeh et al., 2019).
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Table 1. SHARP active region parameters formula and description

Keyword Formula Description

TOTUSJH Hctotal ∝
∑

|Bz .Jz | Total unsigned current helicity

TOTUSJZ Jztotal =
∑

|Jz |dA Total unsigned vertical current

USFLUX Φ =
∑

|Bz |dA Total unsigned flux

AREA ACR Area =
∑

Pixels Area of strong field pixels in the active region

SAVNCPP Jzsum ∝
∣∣∣∑B+

z JzdA
∣∣∣+ ∣∣∣∑B−

z JzdA
∣∣∣ Sum of the absolute values of the net current per polarity

TOTPOT ρtot ∝
∑(

B⃗Obs − B⃗Pot
)2

dA Total photospheric magnetic free energy density

R VALUE Φ =
∑

|BLoS | dA within R mask Sum of flux near polarity inversion line

TOTUBSQ F ∝
∑

B2 Total magnitude of Lorentz force

ABSNJZH Hcabs ∝ |
∑

Bz .Jz | Absolute value of the net current helicity

MEANPOT ρ ∝ 1
N

∑(
B⃗Obs − B⃗Pot

)2
Mean photospheric magnetic free energy

MEANSHR Γ = 1
N

∑
arccos

(
B⃗Obs.B⃗Pot

|BObs||BPot|

)
Mean shear angle

SHRGT45 Area with Shear > 45◦ / Total Area Area fraction with a shear angle higher than 45◦

TOTFZ Fz ∝
∑(

B2
x +B2

y −B2
z

)
dA Sum of z-component of Lorentz force

MEANGAM γ = 1
N

∑
arctan

(
Bh
Bz

)
Mean angle of field from radial

TOTFY Fy ∝
∑

ByBzdA Sum of y-component of Lorentz force

MEANGBT |∇Btot| = 1
N

∑√(
∂B
∂x

)2
+

(
∂B
∂y

)2
Mean gradient of total field

MEANGBH |∇Bh| = 1
N

∑√(
∂Bh
∂x

)2
+

(
∂Bh
∂y

)2
Mean gradient of horizontal field

MEANJZD Jz ∝ 1
N
]
∑(

∂By

∂x
− ∂Bx

∂y

)
Mean vertical current density

MEANGBZ |∇Bz | = 1
N

∑√(
∂Bz
∂x

)2
+

(
∂Bz
∂y

)2
Mean gradient of vertical field

EPSY ∂Fy ∝ −
∑

ByBz∑
B2 Sum of y-component of normalised Lorentz force

EPSX ∂Fx ∝
∑

BxBz∑
B2 Sum of x-component of normalised Lorentz force

TOTFX Fx ∝ −
∑

BxBzdA Sum of x-component of Lorentz force

EPSZ ∂Fz ∝
∑

B2
x+B2

y−B2
z∑

B2 Sum of z-component of normalised Lorentz force

MEANALP αtotal ∝
∑

Jz .Bz∑
B2

z
Mean characteristic twist parameter, α

MEANJZH Hc ∝ 1
N

∑
Bz .Jz Mean current helicity

As we are taking the approach of point-in-time prediction, according to the
study by Ahmadzadeh et al. (2019), one of the major factors that affect the
performance of the model is the extensive class imbalance between positive and
negative samples.

Figure 2 shows the positive and negative samples in each dataset prepared.
The figure clearly shows that the number of negatively sampled events far
outnumber the positively sampled events. This imbalance becomes much more
significant at datasets considering higher flare magnitudes. If this imbalance
is not properly dealt with, the results and predictions can be misleading as the
data is biased towards non-flaring events. There are various methods to deal with
imbalanced problems. In this work, we use an oversampling technique, namely,
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Table 2. Flaring history parameters formulae and description

Keyword Formula Description

Cdecay Cdecay(xt)=
∑

fi∈FC
e−

t−t(fi)
τ Time decay value based on the

past C-class flares

Mdecay Mdecay(xt)=
∑

fi∈FM
e−

t−t(fi)
τ Time decay value based on the

past M-class flares

Xdecay Xdecay(xt)=
∑

fi∈FX
e−

t−t(fi)
τ Time decay value based on the

past X-class flares

Edecay Edecay(xt)=
∑

fi∈F E(fi)e
− t−t(fi)

τ Time decay value determined using magnitudes

of all past flares

logEdec logEdec(xt)=
∑

fi∈F log(E(fi))e
− t−t(fi)

τ Time decay value determined using log-magnitudes

of all past flares

Chist - Total number of C-class flares ever recorded in an AR

Mhist - Total number of M-class flares ever recorded in an AR

Xhist - Total number of X-class flares ever recorded in an AR

Chist1d - C-class flare activity in an AR over 24 hours

Mhist1d - M-class flare activity in an AR over 24 hours

Xhist1d - X-class flare activity in an AR over 24 hours

Xmax1d - Maximum X-ray intensity 24 hours before

Synthetic Minority Over-sampling Technique (SMOTE). Normal oversampling
techniques randomly duplicate examples in minority class without adding any
new information to the set. SMOTE, as described in Chawla et al. (2002), works
by selecting examples that are close in feature space and interpolating them to
find new examples.

During the course of time, there were several modifications to the basic
SMOTE algorithm changing the approach on how each selects samples from
the minority class. A few of the most commonly used are Borderline SMOTE
(Han, Wang, and Mao, 2005), Borderline SMOTE SVM (Nguyen, Cooper, and
Kamei, 2011) and Adaptive Synthetic Sampling (He et al., 2008). Trial runs of
the whole flare prediction algorithm with these three variations were conducted
separately, in which the Borderline SMOTE algorithm performed the best. Thus
we have used the Borderline SMOTE method along with random undersampling
(Chawla et al., 2002) to create the final required dataset. This will bring the
ratio of flaring events to non-flaring events to a value around 0.6. This value was
chosen by running a grid search on values from 0.1 to 0.9 and optimising the
performance of the classifier.

2.5. Standardisation

As the features are of very different scales, the model could give higher preference
to those features with higher numerical values. To prevent this, we standardise
the values of each feature, bringing them to a comparable scale.
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The following equation is used to calculate the standardised values for each
feature. For nth feature of the mth data sample, the standardised value is given
by:

smn =
vmn − µn

σn
, (6)

where vmn is the actual value of the nth feature, and µn and σn are the mean
and standard deviation of the nth feature respectively.

3. Machine Learning Classifier

3.1. Labeling Algorithm

As our prediction model is a binary classifier, we define the flaring and non-flaring
events as binary flags. First, we used the operational form of associations between
active regions and solar flares to label the flares. While using the operational
form, if an active region produces any flares within 24 hours after the sample
time, it is classified as a positive class or flaring event, and if it does not flare
within the given time, it is classified as a negative class or the non-flaring event.
Secondly, we designed a new labelling algorithm taking into account the varying
nature of solar activity throughout the cycle. The new algorithm divides the
solar cycle into 12 parts, keeping flare occurrences equal in each and allotting
each division a prediction window which varies logarithmically from 6 hours to
24 hours in the active and quiet periods of the solar cycle. Figure 3(a) and Figure
3(b) show how the prediction window varies and how it is allotted throughout
the solar cycle.

For our model, we will be considering C-Class, M-Class, and X-Class flares
as positive events and the rest as negative. Furthermore, in terms of flare mag-
nitude, we prepared two datasets such that the first one considers any flare with
a magnitude greater than or equal to a C-Class flare to be positive and the
second one such that any flare with a magnitude greater than or equal to an M-
Class flare is considered positive. Due to high-class imbalance in the ≥M-Class
dataset, only the operational form of labeling is adopted for the same. Thus we
have three datasets: ≥C-Class dataset (24 hour prediction window), ≥C-Class
dataset (varying prediction window) and ≥M-Class dataset (24 hour prediction
window).

3.2. Light Gradient Boosting Machine Classifier

We use a LightGBM model as our classifier. LightGBM (Ke et al., 2017b) is
a highly efficient Gradient boosting decision tree (GBDT) algorithm developed
by Microsoft Corporation in 2016. Compared to other GBDT algorithms like
XGboost, LightGBM uses an optimised histogram-building method by down-
sampling data and features using GOSS (Gradient Based One Side Sampling)
and EFB (Exclusive Feature Bundling).

SOLA: Manuscript.tex; 31 October 2023; 4:18; p. 9



2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year
 (a)

7.5

10.0

12.5

15.0

17.5

20.0

22.5
La

be
llin

g 
ho

u 
s

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Yea 

0

20

40

60

80

100

120

Nu
m

be
  o

f s
un

sp
ot

s

(b)

Monthly smoothed

−5

0

5

10

15

20

La
be

llin
g 

ho
u 

s

Figure 3. (a) Varying label prediction window (b) Divisions made throughout the solar cycle
with color map displaying the prediction window.

In contrast to its gradient-boosting counterparts, LightGBM’s histogram build-
ing approach results in significant improvements in efficiency and forecasting
ability. The algorithm discovers complex data patterns by concentrating on
expanding leaf nodes that have the greatest impact on loss reduction, which
is a significant advantage for our solar flare prediction task using HMI SHARP
data. This choice of classifier perfectly complements the complex nature of solar
flare predictors and triggers in our dataset. LightGBM is equipped to understand
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Figure 4. Leaf-wise and level-wise growths.

intricate relationships and distinctions thanks to the leaf-wise growth technique,
which effectively decodes complex solar phenomena. Hyperparameters are used
to further fine-tune the algorithm’s performance, achieving a balance between
computational needs and predictive power across various dataset sizes. Never-
theless, it is important to recognise the hindrances of the traditional level-wise
growth approach from which LightGBM deviates. The primary distinction be-
tween leaf-wise and level-wise growth lies in how decision trees are constructed.
In the leaf-wise approach, individual leaves at the end of the tree are allowed to
grow independently, as opposed to the level-wise method, where growth occurs
level by level sequentially. This difference has been visualised in Figure 4. Even
though level-wise growth ensures a balanced tree structure and reduces overfit-
ting, it might miss complex patterns in our data on solar activity. With its deeper
trees and greater ability to capture complex interactions, LightGBM’s adoption
of the leaf-wise growth strategy presents a compelling alternative tailored to
the intricacies of solar flare prediction. The appeal of LightGBM goes beyond
its algorithmic innovation and includes its resource-conserving architecture. The
algorithm uses gradient-based optimisation techniques like GOSS and EFB to
speed up training and feature extraction, which is a significant benefit when
dealing with a large dataset such as in the case of solar flare data.

The utilisation of LightGBM introduces a comprehensive array of hyperpa-
rameters, facilitating a nuanced configuration of the model. Within our study,
the hyperparameters subject to tuning encompass the bagging fraction, learn-
ing rate, number of leaves, L1 regularisation, and L2 regularisation (Ke et al.,
2017b). The bagging fraction assumes a pivotal role by governing the proportion
of training data used in each iterative step, thereby contributing to the model’s
generalisation capability. Notably, the refinement of hyperparameters such as the
number of leaves, and the imposition of L1 and L2 regularisation mechanisms
collectively contribute to the model’s regularisation process. The optimisation
of these parameters is undertaken through an exhaustive grid search method
aimed at eliciting the optimal configuration that maximises model performance,
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gauged through the TSS metric. The ranges considered for each parameter are
bagging fraction ϵ (0, 1), learning rate ϵ (0.0001, 0.1), number of leaves ϵ (24, 28),
L1 ϵ (0, 1) and L2 ϵ (0, 1). Each parameter is sampled from a uniform prior in
the given range. Even though this is not the best method in terms of efficiency,
we chose this approach as it had a straightforward implementation and we were
able to complete it within a reasonable time frame.

One of the parameters used in training the model is the loss function. We have
used the focal loss as the chosen loss function for our model. As per Lin et al.
(2017), the focal loss is a better choice for imbalanced problems than metrics
like cross-entropy, as the former assigns more weight on easily misclassified labels
and down-weight easily classified labels. For a binary classification problem, if
y ∈ {±1} is the ground truth class and p ∈ [0, 1] is the model’s estimated
probability for class y = 1, We could write the α-balanced variant of focal loss
to be,

FL(pt) = −α(1− pt)
γ log(pt) , (7)

where, pt =

{
p if y = 1
1− p otherwise ,

(8)

where t indicates the true class. This loss function is minimised over iterations
to train the classification model. Optimising focusing parameter γ and weighing
parameter α lets the model perform better by assigning more weight to easily
misclassified parameters. We set early stopping rounds parameter to be 20, to
let the model stop training after a certain score in the validation set has been
reached so as to avoid over-fitting.

3.3. Performance metrics

Figure 5. Confusion matrix.
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Being an imbalanced binary classification problem, most common metrics
like accuracy would not act as a functional measure of the performance (He and
Garcia (2009)). This is because the high accuracy could easily be achieved by
only predicting the majority class, i.e. non-flaring class. A confusion matrix, as
shown in Figure 5, can be used to represent the results of a binary classifier. The
classifier’s accurate predictions of flaring ARs are referred to as True Positives
(TP), while incorrect predictions of flaring ARs are referred to as False Negatives
(FN). Similarly, True negatives (TN) refer to accurate predictions of non-flaring
ARs, and False positives (FP) refer to incorrect predictions of non-flaring ARs.

To statistically analyse the model results and compare with the observed
data, we chose five metrices which are commonly used in the literature. Their
expressions are following:

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

HSS =
2(TP× TN− FP× FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
, (11)

TSS =
TP

TP + FN
− FP

TN+ FP
, (12)

BACC =
1

2

(
TP

TP + FN
+

TN

TN+ FP

)
, (13)

where, precision summarises the number of predicted positive classes that belong
to the positive class, while recall summarises how well the positive class was
predicted. HSS is Heidke Skill Score and measures the fractional improvement
of the forecast over the standard forecast. TSS is True Statistical Score which is
defined as the difference between the recall and false alarm rate. Even though
HSS is useful, it changes despite the prediction success being held constant
(Bloomfield et al., 2012), so it is suggested to use True Skill Statistic (TSS)
as the measure of performance. Additionally, TSS is unbiased to class-imbalance
ratio, thus making it the most useful measure for flare forecasting methods. We
will also calculate the Balanced Accuracy (BACC) as it is a good measure for
studying an imbalanced classification (He and Garcia, 2009). Larger the TSS,
HSS, or BACC, the better the performance of the model. Even though we will
calculate all the mentioned metrics, we will focus more on increasing the True
Skill Statistic as it provides a better measure in flare forecasting.

4. Results and Discussion

4.1. Model Evaluation

To find the best hyperparameters for our model, we perform a grid search in the
parameter space to maximise the TSS score. We run the grid search for bagging
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fraction, learning rate, number of leaves, L1 regularisation, and L2 regularisation.
Through trial runs, the best-boosting method for our dataset was found to be
the Gradient Boosting Decision Tree (GBDT). Furthermore, we determined the
optimal hyperparameters for our model are as follows: a learning rate of 0.01, a
bagging fraction of 0.95, 146 leaves in the decision trees, L1 regularisation set at
0.74, and L2 regularisation set at 0.23.

As mentioned in Section 3.1, we prepared three datasets (≥C-Class (24-hour
prediction window), ≥C-Class (varying prediction window), ≥M-Class (24-hour
prediction window)) to train our model. Each dataset was further divided into
training, validation, and test sets. To ensure the unbiased nature of performance
metrics, we need to make sure that the model performance is tested on a new
dataset that it has not seen before. To ensure this, we divided the datasets such
that all the samples collected from January 2012 to December 2014 were used to
train the model, January 2015 to December 2016 were used as validation set to
tune the model, and finally, samples from January 2017 to December 2020 were
used to test the data. This division ensures the former statement and describes
the real-world scenario for predicting solar flares.

Once the training, validation, and testing datasets are prepared, the Light-
GBM classifier is trained with the training dataset. Once the model is trained,
a threshold moving approach is used to improve the model to deal with the
imbalance in the data. For a binary prediction of flaring or non-flaring, a decision
threshold is used to convert the predicted probability into a class label. The
default value of 0.5 may not represent the predicted probabilities accurately due
to the skewness in the data. Hence, threshold moving is used in moving the de-
cision threshold to an optimum value, reflecting the predicted probability in the
right manner. The threshold moving is done using the training data set. Figure
6 and 7 display the TSS score against threshold plots for each dataset, using
which the optimum threshold has been calculated for each dataset. For the C-
class dataset with varying prediction window, the threshold is 0.461 (TSS score:
0.865); for the C-class dataset with 24-hour prediction window, the threshold
is 0.410 (TSS score: 0.856) and for the M-Class dataset, the threshold is 0.372
(TSS score: 0.977). Once the best threshold is achieved, the previously mentioned
hyperparameters (Section 3.2) are tuned using the validation set to achieve the
best parameters for the model.

After calculating the threshold values for each dataset, we tested our model on
the test set using all the parameters we calculated. All the performance metrics
mentioned in the previous section were calculated to analyse the model. We
calculated the score for two sets of features, only SHARP parameters and both
SHARP and flaring history parameters. These scores are displayed in the Table
3. Upon conducting a comparative analysis of the scores within both scenarios,
it becomes evident that the incorporation of flaring history parameters has re-
sulted in noteworthy enhancements across nearly all evaluated metrics, notably
the TSS score. This substantiates the significance of integrating flaring history
parameters and their instrumental role in improving the model performance.
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Along with the score, we have also provided the confusion matrix (Figure 9 and
Figure 10) of the classification model on each dataset. Comparing the confusion
matrices between varying and 24 hour prediction windows for ≥C-Class, we can
see that the normalised true positive value for the 24-hour prediction window
surpasses that of the varying prediction window, while conversely, the normalised
true negative values exhibit higher proportions for the latter approach. This
observation implies that the 24-hour prediction window proves more helpful
for the model in handling the class imbalance, thereby enhancing its predictive
capability for positive class instances (flaring events). Conversely, in the case of
the varying prediction window, despite achieving a commendable 96% accuracy
in predicting true negatives, its capacity to accurately identify positive labels
stands at a relatively modest 55%. Shifting focus to the ≥M-Class dataset, it
becomes apparent that the model achieves an impressive 99.1% accuracy in
discerning non-flaring events, while its performance in predicting flaring events
is substantially less satisfactory, amounting to a 52.8% accuracy. This outcome
can be explained by the innate rarity of M-Class events, posing challenges for
the model in effectively distinguishing between positive and negative instances.
The whole workflow and the steps taken in the data analysis and model training
part of this work, have been illustrated in the form of a flowchart in Figure 8.
In the figure, each block represents an important step in the adopted model; the
black lines represent how the data is distributed in different steps, and the red
line represents the order in which the data analysis steps are implemented.
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Figure 6. TSS score vs. threshold plot for a moving threshold for predicting C-class flares
with varying prediction window and 24-hour prediction window.

4.2. Feature set evaluation

Not all features are important towards solar flare prediction (Bobra and Cou-
vidat, 2015). While some of them show high correlation with the output, for
a few of the features, the inclusion of them in the feature could decrease the
overall performance. Thus we use a univariate feature selection algorithm, using
ANOVA F-value score to rank them. For ≥C-Class (24-hour prediction window)
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Figure 7. TSS score vs. threshold plot for moving threshold for predicting M-class flares with
24-hour prediction window.

Figure 8. Flow chart of the model adopted. Starting from collection and processing solar data,
the above diagram describes the steps taken throughout the paper in a brief manner.Each block
represents an important step in the adopted model. The red line indicates the order in which
the model was executed and the black line shows how the data was distributed between steps.

dataset (Figure 11), the Total unsigned current helicity feature is identified as
having the highest F-score (TOTUSJH). Numerous studies have suggested a
strong correlation between the accumulation of magnetic helicity and the occur-
rence of flares in active regions (Park, Chae, and Wang, 2010; Liu et al., 2023).
Features like Total magnetic vertical current (TOTUSJZ), Total unsigned flux
(USFLUX) are also among the high-ranked features for this dataset. From the
flaring history parameters, CDEC was ranked in the top 3, suggesting the time
decay value of C flares in an active region shows high correlation towards a
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Figure 9. (a) Confusion matrix of test results using LightGBM model in the ≥C-Class dataset
with varying prediction window; (b) Confusion matrix of test results using LightGBM model
in ≥C-Class dataset with 24 hour prediction window.
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Figure 10. Confusion matrix of test results using LightGBM model in the ≥M-Class dataset
with 24-hour prediction window.

flaring event. It can also be seen that the history of C-flares is also ranked high.
It can be noted that just considering the SHARP active region parameters,
11 out of the top 13 magnetic summary features selected matched with the
top 13 magnetic summary features mentioned in Bobra et al. (2014). These
include TOTUSJH, TOTUSJZ, USFLUX, AREA ACR, SAVNCPP, TOTPOT,
R VALUE TOTBSQ, ABSNJZH, MEANPOT, and MEANSHR. Thus our find-
ings are consistent with published values in the literature.

For ≥C-Class (varying prediction window) dataset (Figure 12) an interesting
trend is observed. Even though they display slightly different importance, all the
first 12 features are the same as the first 12 features in the previous dataset. This
shows that the basic dependence of different magnetic and flaring history features
on flaring activity remains intact with the change in the prediction window. But
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Table 3. Flare prediction results of LightGBM model on different datasets

Metric ≥C-
Class(varying
prediction
window)

≥C-Class(24
hr prediction
window)

≥M-Class(24
hr prediction
window)

SHARP

and flaring
history
parameters

Accuracy 0.92421 0.86982 0.98687

Precision 0.54308 0.41357 0.42171

Recall 0.57585 0.67212 0.52398

ROC AUC 0.88703 0.88053 0.92618

TSS 0.53173 0.56429 0.51597

BACC 0.76586 0.78214 0.75799

HSS 0.51731 0.44170 0.46012

SHARP

parameters

Accuracy 0.91440 0.85773 0.97987

Precision 0.48841 0.38504 0.26559

Recall 0.56554 0.67062 0.47561

ROC AUC 0.86081 0.86477 0.92951

TSS 0.51165 0.54949 0.46107

BACC 0.75583 0.77474 0.73053

HSS 0.47729 0.41345 0.33084

a notable difference occurs in the importance of the CDEC parameter. Compared
to the 24-hour prediction window, the varying prediction window shows higher
relative importance towards the C flare decay value. This could have derived
from the fact that, during high solar activity, the 24-hour prediction window
could have included a higher number of samples even though they are from
different C Class flares, thus reducing the importance of CDEC parameter. By
the introduction of varying prediction windows at higher solar activity, only the
samples corresponding to observed flare will contribute, thus letting the model
learn it as an important feature for flare prediction.

For ≥M-Class (24 hour prediction window) dataset (Figure 13), the feature
with the highest F-score is Absolute value of the net current helicity (ABSNJZH).
Features like Total unsigned current helicity (TOTUSJH), Total magnetic verti-
cal current (TOTUSJZ), and Sum of the modulus of the net current per polarity
(SAVNNCPP) also are among highly ranked features for this dataset. From the
flaring history parameters, similar to C-Class prediction, time decay value of
M flares in an active region (MDEC) shows high correlation towards an M
Class flaring event. We also observe that apart from M Class flaring history
parameters, CDEC and CHIS also show a higher importance towards the M
Class flaring events. This could imply that an active region with C class flares
occurring frequently is more prone to M class events.

In order to identify the optimal feature set, we have conducted an evaluation
of performance metrics that are contingent upon the number of features utilised.
This analysis entails arranging features in descending order with regard to their
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significance. The result can be seen in Figure 14, 15 and 16. This brings up an
interesting property that not all the parameters are required to produce the best
classifier. In the context of the ≥C-Class dataset, encompassing both variable
and 24-hour prediction windows, noticeable trends emerge regarding feature
selection. Initially, an ascent in scores is observed for 1 to 5 features, followed
by a subsequent plateauing effect as additional features are incorporated. This
phenomenon potentially underscores the pivotal contribution of the initial high-
importance features towards predicting solar flaring activity. Conversely, the
inclusion of less significant features appears to lead to a saturation of scores, in-
dicating their comparatively diminished role in flare prediction. In the case of the
≥M-class dataset, a divergence in trends is evident across different performance
metrics. Specifically, BACC and TSS, designed to address imbalanced datasets,
exhibit a parallel trajectory, with scores peaking for 1 to 5 features and gradually
diminishing thereafter. This trend implies that incorporating features beyond the
most crucial ones not only stabilises but also reduces the predictive scores. This
decline may stem from potential overfitting, as the model’s complexity increases,
leading to the incorporation of less relevant patterns from the less important
features. While both the ≥C-Class and ≥M-Class datasets have undergone re-
sampling to achieve comparable ratios, the relative strength of this trend appears
to be less pronounced in the former. This discrepancy may be attributed to the
specific manner in which SMOTE algorithms perform the resampling process.
SMOTE primarily operates by generating synthetic data points through inter-
polation between existing data vectors. Although this technique mitigates class
imbalance concerns, it does not fundamentally alter the underlying distribution
of parameters within the dataset. Given that events falling into the ≥M-Class
category are inherently less frequent than those categorised as ≥C-Class, this
results in a lower coverage of parameter space for the former class. Consequently,
the model may encounter challenges in discerning and learning relevant patterns,
particularly from the less prominent features within the dataset. In contrast to
the other two metrics, the HSS demonstrates a distinct trajectory, implying
varying influences of features and complexity on this metric itself.
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Figure 11. Univariate feature importance graph for predicting ≥C-class with 24 hour
prediction window. The bar lengths indicate individual ANOVA F-value score.
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Figure 12. Univariate feature importance graph for predicting ≥C-class with varying
prediction window. The bar lengths indicate individual ANOVA F-value score.
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Figure 13. Univariate feature importance graph for predicting ≥M-class with 24 hour
prediction window. The bar lengths indicate individual ANOVA F-value score.
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Figure 14. Performance metrics (TSS, HSS and BACC) as a function of number of features
using LightGBM classifier for ≥C-Class with 24 hour prediction window dataset.

In an attempt to elucidate the detectable dissimilarity in the importance
of various features, we have undertaken the visualisation of feature importance
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Figure 15. Performance metrics (TSS, HSS and BACC) as a function of number of features
using LightGBM classifier for ≥C-Class with varying prediction window dataset.
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Figure 16. Performance metrics (TSS, HSS and BACC) as a function of number of features
using LightGBM classifier for ≥M-Class with 24 prediction window dataset.

distributions concerning both positive (flaring) and negative (non-flaring) labels.
This visual representation is presented in Figures 17 and 18. Notably, for features
attributed with heightened importance, a noticeable divergence in distribution
peaks and spreads between the positive and negative labels is observed, thereby
conferring distinctiveness to these features. Conversely, among features deemed
less significant, a marked semblance in distribution patterns is discernible, in-
dicative of their diminished discriminative capacity. This disparity in feature
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Figure 17. Histogram plot of various features in both positive and negative sample in dataset
1 (≥C-Class with 24 hour varying window). The top row contains the parameters from the
selected set of parameters while the bottom row contains the rejected parameters.

importance manifestation is particularly pronounced within the context of the
M-Class dataset, wherein the broader distribution spread of certain features
is evident. This phenomenon is particularly notable due to the scarcity and
heightened magnitude of ≥M-class flares in contrast to ≥C-Class flares.

Table 4. Flare prediction results of LightGBM model using the highest scored parameters

Metric ≥C-Class(varying
prediction win-
dow)

≥C-Class(24
hr prediction
window)

≥M-Class(24
hr prediction
window)

Accuracy 0.92055 0.89841 0.96987

Precision 0.52083 0.50001 0.22541

Recall 0.58531 0.63108 0.71869

ROC AUC 0.89077 0.88711 0.94186

TSS 0.53632 0.63057 0.69134

BACC 0.76816 0.80979 0.84567

HSS 0.50769 0.45664 0.33201

After the above analysis, we selected the best set of features as per data in
Figures 14, 15, and 16. Based on the plots, we identified the optimal number of
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Figure 18. Histogram plot of various features in both positive and negative sample in dataset
2 (≥M-Class with 24 hour varying window). The top row contains the parameters from the
selected set of parameters while the bottom row contains the rejected parameters.
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Figure 19. (a) Confusion matrix of test results using the highest scoring parameters in
≥C-Class dataset with varying prediction window; (b) Confusion matrix of test results using
the highest scoring parameters in ≥C-Class dataset with 24 hour prediction window.

features around the highest TSS metric within each dataset. From the figures,
it is clear that all three datasets displayed the highest TSS metric in between
3 - 5 sets of features. To have a more robust and general model and avoid
having too few features leading to loss of information, a set of top five features
was selected for each dataset.Subsequently, the classifier model was re-trained
exclusively using these selected prominent features. The subsequent outcomes
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Figure 20. Confusion matrix of test results using the highest scoring parameters in ≥M-Class
dataset with 24-hour prediction window.

obtained utilising this refined feature subset are documented in Table 4. We
have also plotted the confusion matrices (Figure 19 and 20) for the new subset of
features for comparison. When comparing with Table 3, concerning the ≥C-Class
dataset, consistent enhancements in pivotal metrics, namely, TSS and BACC, are
evident for both labeling algorithms. This observation underscores the efficacy
of utilising a constrained feature subset, whereby improved predictive power is
achieved in contrast to employing the complete set of features. Regarding the
remaining metrics, precision, gauging the proportion of true positives among
positive predictions, demonstrates better scores in the recent model for both
scenarios. This outcome indicates the model’s heightened success in accurately
identifying positive instances. In terms of recall, which quantifies the fraction
of correctly identified actual positives, a minor reduction is discernible in the
recent model due to a slight elevation in False Negative values. As for the
HSS metric, a marginal increase is noted in the 24-hour prediction window
dataset, whereas a slight decrease is observed in the varying window dataset.
Given HSS’s susceptibility to data imbalance, these trends inadequately repre-
sent model performance. Analysing the confusion matrices (Figure 19) in relation
to its predecessor (Figure 9), it becomes evident that while a marginal decline in
the accuracy of True Negatives is noticeable, the model exhibits a significantly
enhanced capability to predict True Positives within both the varying prediction
window and 24-hour prediction window datasets.

With regard to the ≥M-Class dataset, a notable finding is the significant
increments in TSS and BACC metrics, which point to a noticeable improvement
in model performance. Conversely, the metric of precision experiences a signif-
icant reduction, which can be attributed to the interplay between the scarcity
of ≥M flares and a slight decrement in true negative values. This compound
effect contributes to the observed decline in precision. Similar mechanisms are
also evident in the context of recall, where a marked increase is witnessed for
the recent model. This phenomenon can be attributed to analogous underlying

SOLA: Manuscript.tex; 31 October 2023; 4:18; p. 25



factors. The trend holds true for the Heidke Skill Score (HSS) metric as well,
exhibiting a declining trajectory. It is imperative to emphasise that, during per-
formance evaluation, metrics other than TSS and BACC should not be utilised
due to their unsuited handling of data imbalance. Upon inspecting the confusion
matrix, it becomes evident that the predictive capacity has notably improved,
underscored by a significant enhancement in true positives.

4.3. Comparison with other similar works

We have also conducted a comparison of our results using the LightGBM model
with existing studies that employed different methods, such as the Support Vec-
tor Machine (SVM) algorithm, Random Forest (RF), Long-Short Term Memory
(LSTM), k-NN method, and Deep Flare Net (DeFN). Various studies have used
diverse sets of scores or metrics to evaluate their findings. Given our aim to
align our outcomes with related research, we have adopted the most commonly
used evaluation measures: True Statistical Score (TSS) and Accuracy (Acc) for
comparative analysis.

It is important to note that different studies in the literature have constructed
datasets in varying ways, involving distinct time intervals for observations and
analysis periods. Therefore, we have considered the most favourable outcomes
achieved by these studies on their respective testing datasets for events of magni-
tude ≥M within a 24-hour period. While the presented analysis may not provide
an exhaustive direct comparison of different solar flare forecasting models due to
variations in data construction and analysis, our effort is to offer insights based
on the chosen performance measures.

Among the available models, the Support Vector Machine (SVM) algorithm
has been widely used. Bobra and Couvidat (2015) used a method to select
important factors and found that using 13 of these features, they got a TSS
of 0.761 and Acc of 0.924. Nishizuka et al. (2017) also used the SVM algorithm,
mixing vector magnetogram and UV brightening data to get a TSS of 0.87 and
Acc of 0.988. Another study by Florios et al. (2018) used SVM too, and they
used data over five years with 3-hour gaps to forecast ≥M flares, obtaining a
TSS of 0.59 and Acc of 0.94. Additionally, Ribeiro and Gradvohl (2021) reported
a TSS of 0.622 using SVM.

Some studies tried the Long Short-Term Memory (LSTM) network to predict
whether an Active Region (AR) will produce a ≥M class flare within 24 hours.
Liu et al. (2019) used this method, including 25 SHARP parameters and 15 flare
history parameters, to achieve a TSS of 0.79 and Acc of 0.909.

The Random Forest (RF) algorithm has also been used for creating solar flare
prediction models using machine learning. Florios et al. (2018) used RF with
SDO/HMI SHARP data, getting a TSS of 0.74 and Acc of 0.93. Furthermore,
Ribeiro and Gradvohl (2021) achieved a TSS of 0.63 for ≥M class solar flare
prediction within 24 hours using RF.
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Alongside SVM, Nishizuka et al. (2017) explored k-Nearest Neighbors (k-NN)
with a TSS of 0.912 and Acc of 0.995, and Extremely Randomised Trees (ERT)
with a TSS of 0.71 and Acc of 0.990. Using 65 features, they found that k-NN
performed better than ERT and SVM. Additionally, Nishizuka et al. (2018) used
extra features like hot coronal brightening and data from SDO/AIA 131 Å and
GOES X-ray emissions, to create the Deep Flare Net (DeFN) algorithm. This
approach achieved a TSS of 0.802 and Acc of 0.858.

In our study, we used LightGBM and got a TSS of 0.69 and Acc of 0.970 by
focusing on the top features. Similarly, Ribeiro and Gradvohl (2021) used Light-
GBM and got a TSS of 0.61. They also found that SVM, RF, and LightGBM
gave similar TSS results.

To provide a complete picture of solar flare predictions using different meth-
ods, we used a modified Taylor diagram (Taylor, 2001). This kind of diagram
is often used to compare how well a model’s forecasts match real observations.
Usually, the Pearson correlation coefficient (cc) and standard deviation (std)
between model’s result and observation is considered. In this study, we have
taken a similar approach but have used Acc and TSS values instead of cc and
std.

Figure 21. The picture depicts a modified Taylor diagram for comparing the results of solar
flare prediction models using different machine learning algorithms. The radial distances from
the center represent their TSS values and azimuthal positions are corresponding to Acc of
their models. The position where TSS=1 and Acc=1 has been taken as the reference point for
comparison.
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Figure 21 illustrates a modified Taylor diagram presenting outcomes from

distinct algorithms in comparable studies. The reference point, denoted by a

black star, is set at TSS=1 and Acc=1. The distance of the marks from the

center reflects their TSS value, while their position around the circle signifies

their Acc value. The circles centered on the reference point indicate how closely

the model outcomes resemble the ideal state of Acc=1 and TSS=1. The figure

shows the results from those works in which both TSS and Acc were mentioned.

Models that are closer to the reference point, or essentially within smaller

circles, exhibit stronger resemblance to Acc=1 and TSS=1. This can be a method

to compare diverse model performances based on their best results. Interestingly,

among the three works utilising SVM, they present notably different results, each

lying in distinct circles. Conversely, studies using LSTM demonstrate comparable

outcomes, all positioned within the same circle at almost identical distances from

the reference point.

Following this approach, our LightGBM-based model outperforms many prior

studies, especially those utilising LSTM, RF, MLP, and DeFN. Notably, the

results of Nishizuka et al. (2017) study showcase the highest performance. In

this study, they employed k-NN, SVM, and ERT, with k-NN delivering the most

favourable results.

The strong performance of the algorithms in Nishizuka et al. (2017) study

could be attributed to their use of a wide range of solar features. They employed

a total of 65 features and demonstrated their relative importance for solar flare

prediction. Their findings revealed that past flare activities, like the flare history

in an Active Region (AR) and the highest X-ray intensity of the previous day,

held the greatest significance. Following this, the configurations of magnetic

neutral lines, unsigned magnetic flux, and the area of UV brightening were also

considered highly important.

While their findings pointed to the greater significance of certain features

compared to others, their results also indicated that employing all features might

improve performance. In contrast, other studies have shown that utilising a more

focused set of essential features could lead to equal or even better outcomes. For

instance, Bobra and Couvidat (2015) explored a wide range of 25 parameters

and found that using only four—total unsigned current helicity, total magnitude

of the Lorentz force, total photospheric magnetic free energy density, and total

unsigned vertical current—resulted in a TSS score similar to the combined top

13. Additionally, Liu et al. (2019) demonstrated that using the 14-22 most im-

portant features, including both flare history and magnetic parameters, yielded

superior performance compared to using all 40 features together (25 SHARP and

15 flare history). Our results also indicate that excluding less valuable features

from the set could enhance the model’s performance in predicting solar flares.
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5. Summary and Conclusion

In this work, we used a gradient boosted decision tree classifier known as Light-
GBM to develop a machine learning model to predict solar flares based on
observed magnetic and flaring history parameters. Using the data from SDO
HMI SHARP data archive and GOES solar flare database, we prepared the final
datasets for the machine learning model. Along with the 25 magnetic parameters,
we also calculated 12 derived parameters to also account for the flaring history
of that particular active region. Solar flare prediction is the exact definition of
an imbalanced classification problem in machine learning. This arises due to
the fact that the number of non-flaring events or weak flare events (A and B
class flares) far exceed the strong flares. This introduces an innate bias towards
non flaring/weak flaring events while training a machine learning model. We
used various techniques in preprocessing as well as in the classifier to address
this issue. Borderline Synthetic Minority Over-sampling Technique (Borderline
SMOTE) along with random undersampling was employed as a preprocessing
step to get the ratio of the flaring and non-flaring events to be around 0.6. This
reflected as an increase in the model performance thus was accepted as a part
of the final classification pipeline.

For labeling the data as positive and negative samples, along with the com-
monly used operational algorithm we experimented with a varying labeling
system which takes into account the varying levels of solar activity. Thus the
model was trained and tested on three datasets:≥C-class(varying prediction win-
dow), ≥C-Class (24 hour prediction window) and M-Class (24 hour prediction
window). In the varying prediction window algorithm, the prediction window
varies from 24 hours to 6 hours and then back to 24 hours while moving from
the start to the end of solar cycle. This attains a minimum of 6 hours predic-
tion window at solar maximum. While using the classifier on both the labeling
methods with ≥C-Class dataset, the scores display an interesting trend where
both 24 hour prediction window and the varying prediction window produce
TSS scores very close to each other. This could be a result of the fact that
as flares are more frequent during activity peak time, due to faster changes in
magnetic activity, a 6 hr prediction window is sufficient in place of a 24 hour
prediction window. But the varying prediction algorithm underachieves in the
case of ≥M-Class, which can point to fact that, being a stronger class of flare,
a constant 24 hour window is necessary to capture the changes in the magnetic
properties as opposed to ≥C-class. It should be noted that the present study
does not extensively elaborate upon this case, as the utilisation of the varying
prediction algorithm yielded notably low TSS scores, consequently rendering the
algorithm inconsequential within the context of the examined scenario..

In addition to classification, we also performed feature importance study for
all the magnetic and flaring history parameters. We used ANOVA F-value score
to rank the features for all three datasets. Majority of the most important
features aligned with already published results. While comparing varying and
24 hour prediction window datasets for C-Class flares, we observed a higher

SOLA: Manuscript.tex; 31 October 2023; 4:18; p. 29



importance for C-Class flare decay value in varying prediction window dataset.
This could be concluded as a result of the lower prediction window at solar
maximum letting the model learn only the corresponding samples that affects
the observed flare. Apart from this, both the datasets displayed the same top
features even though the order was slightly different. For the M Class dataset,
the feature importance is similar to that we see for C-Class, except for the fact
that MDEC and MHIS showed a higher importance. To properly observe the
importance of selecting the right features, we ran the classifier with only the top
five features. This confirmed that if we remove the less useful features from the
feature set, the model could display a better performance when it comes to flare
prediction.

We also compared our results with other similar solar flare prediction models,
assessing their relative performance through a Taylor diagram based on their
optimal TSS and Acc values. Our LightGBM-based model demonstrated bet-
ter performance over various other models, especially those employing LSTM,
RF, MLP, and DeFN, when a limited but highly significant set of features was
used. However, the models presented in Nishizuka et al. (2017) yielded better
results than ours. Notably, they utilised a more extensive set of features—65 in
total—compared to other models in the literature. Despite this, multiple studies,
including our own, suggest that focusing on a subset of highly significant features
can improve predictive accuracy. This observation opens up an intriguing ques-
tion regarding the optimal number of features for solar flare prediction: is a larger
or smaller set more effective? To address this question comprehensively, further
analysis involving model comparisons and in-depth feature selection assessments
is required.

In the future, with more magnetic data of multiple solar cycles, we aim to
improve the performance of the classifier as well as perform more comprehensive
study on relative significance of features. During our trial runs, we noticed that
instead of using consecutive time frames for training, validating, and testing
datasets, if we randomly split the whole data into these datasets, the performance
of the models is much better. Therefore, by using solar magnetic data from
multiple cycles, we may achieve better accuracy with the solar flare prediction
model.
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Tóth, G., van der Holst, B., Huang, Z.: 2011, Obtaining potential field solutions with spherical

harmonics and finite differences. The Astrophysical Journal 732, 102. DOI.
Wang, X., Chen, Y., Toth, G., Manchester, W.B., Gombosi, T.I., Hero, A.O., Jiao, Z., Sun,

H., Jin, M., Liu, Y.: 2020, Predicting solar flares with machine learning: Investigating solar
cycle dependence. The Astrophysical Journal 895, 3. DOI.

SOLA: Manuscript.tex; 31 October 2023; 4:18; p. 32

https://doi.org/10.1086/377512
https://doi.org/10.1088/1674-4527/13/9/010
https://doi.org/10.3847/1538-4357/ab1b3c
https://doi.org/10.1088/1674-4527/17/4/34
https://doi.org/10.3847/1538-4357/aca3a6
https://doi.org/10.3847/1538-4365/ac8551
https://doi.org/10.1088/0004-637x/750/1/24
https://doi.org/10.3847/1538-4357/835/2/156
https://doi.org/10.3847/1538-4357/aab9a7
https://doi.org/10.1016/S0273-1177(03)00332-6
https://doi.org/10.1111/risa.13229
https://doi.org/10.1007/s11207-017-1090-7
https://doi.org/10.1088/0004-637X/718/1/43
https://doi.org/10.1051/swsc/2018020
https://doi.org/10.1002/2016SW001390
https://doi.org/10.1016/j.ascom.2021.100468
https://doi.org/10.1029/2000JA000121
https://doi.org/10.1002/2016SW001589
https://doi.org/10.1086/511857
https://doi.org/10.1088/0004-637x/732/2/102
https://doi.org/10.3847/1538-4357/ab89ac

	Introduction
	Data Collection and Preparation 
	SHARP HMI active region parameters
	GOES Flaring data
	Flaring history parameters
	Class imbalance problem
	Standardisation

	Machine Learning Classifier
	Labeling Algorithm
	Light Gradient Boosting Machine Classifier
	Performance metrics

	Results and Discussion
	Model Evaluation
	Feature set evaluation
	Comparison with other similar works

	Summary and Conclusion

